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Abstract. In this paper, we study some algebraic structural properties of skew quasi
cyclic codes and skew generalized quasi-cyclic codes over the ring R = F2+uF2+vF2+
uvF2 where u2 = v2 = 0 and uv = vu. We discuss on Hermitian dual of these classes of
codes over R. Then, we investigate on the generator polynomials and the parity-check
polynomials of 1-generator skew QC codes and 1-generator skew GQC codes. Finally,
we show that the Gray image of a skew quasi-cyclic code over R is a skew l-quasi-cyclic
code of index 4 and the Gray image of skew GQC code over R is a skew GQC code of
index 4.
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1. Introduction

Algebraic coding theory is an area of discrete applied mathematics that is con-
cerned with developing error-control codes and encoding/decoding procedures.
Many areas of mathematics are used in coding theory, and we focus on the in-
terplay between algebra and coding theory. Cyclic codes over finite fields have
been studied since the late 1950 and play a significant role in the coding theory.
In 1994 Hammons et al. [12] studied codes over Z4, then a lot of researches went
towards studying codes over Z4. Bonnecaze and Udaya [5] have studied cyclic
codes over the ring F2+uF2; u

2 = 0. This ring is useful because it shares many
properties of Z4. A complete structure of cyclic codes over Z4 of odd length has
been given in [16].

∗. Corresponding author
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Recently, it has been shown that codes over finite rings are an important class
of codes. Quasi-cyclic (QC) codes are a natural and remarkable generalization
of cyclic codes. QC code of index l over finite ring, defined by the property
that a cyclic shift of a codeword by l places is another codeword, generalize the
class of cyclic codes (l = 1). Skew polynomial rings form an important class of
non-commutative rings. Boucher, Geiselmann and Ulmer in [4] and [10] studied
linear and cyclic codes over skew polynomial rings. Also skew QC codes are
constructed in [1] with the property that | < θ > | = m. The algebraic structure
of generalized quasi-cyclic (GQC) codes over finite fields were introduced by Siap
and Kulhan in [18]. Since then, some properties of these codes were studies by
Esmaeili and Yari in [9]. In [7], Cao studied GQC code of arbitrary length over
finite fields. Cao investigated structural properties of 1-generator GQC code.
Also GQC codes over Galois rings were introduced by Cao.

In this paper we firstly study some basic properties of the ring R = F2 +
uF2 + vF2 + uvF2 where u2 = v2 = 0 and uv = vu. Also we organize basic
notations of skew QC and skew GQC codes. In Section 3 we discuss on the dual
of skew QC and skew GQC codes. Also we obtain a necessary and sufficient
condition on self-dual Hermitian skew QC codes and self-dual Hermitian skew
GQC codes. Finitely we investigate the Gray image of skew QC codes and skew
GQC codes over the ring R in Section 4.

2. Preliminaries

Let Fq be a finite field of cardinality q. A k-dimensional vector subspace
C of the Fq-vector space Fn

q is called a linear (n, k)-code over Fq. A lin-
ear code C is called a cyclic code if whenever (a0, a1, . . . , an−1) ∈ C, then
(an−1, a0, a1, . . . , an−2) ∈ C. In order to convert the combinatorial structure
of cyclic codes into an algebraic one, we consider the following correspondence:

π : Fn
q −→ Fq[x]/(x

n − 1),

(a0, a1, . . . , an−1) 7→ a0 + a1x+ . . .+ an−1x
n−1.

The mapping π is a linear transformation of vector spaces over Fq. Then a
nonempty subset C of Fn

q is a cyclic code if and only if π(C) is an ideal of
Fq[x]/(x

n−1). We will sometimes identify Fn
q with Fq[x]/(xn−1), and a vector

u = (u0, u1, . . . , un−1) with the polynomial u(x) =
∑n−1

i=0 uix
i.

The notion of skew cyclic codes introduced in [4] as a generalization of cyclic
codes. Let θ be an automorphism of Fq. A θ-cyclic code (or skew cyclic code)
is a linear code C with the property that

(a0, a1, . . . , an−1) ∈ C ⇒ (θ(an−1), θ(a0), . . . , θ(an−2)) ∈ C.

It is easy to check that cyclic codes correspond to the case where θ is the identity
mapping.
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Throughout this paper we consider the ring R = F2 + uF2 + vF2 + uvF2

where u2 = v2 = 0 and uv = vu. This ring is a Frobenius ring of characteristic
2. Since

u(F2 + uF2 + vF2 + uvF2) ̸⊂ v(F2 + uF2 + vF2 + uvF2)

and
v(F2 + uF2 + vF2 + uvF2) ̸⊂ u(F2 + uF2 + vF2 + uvF2)

so R is not a finite chained ring. Note that R is a local ring with the maximal
ideal Iu,v = {0, u, v, u + v, uv, u + uv, v + uv, u + v + uv}, since R = R

Iu,v
∼= F2

and R = {0+ Iu,v}∪{1+ Iu,v}. If we define the non-trivial ring homomorphism
θ from R to R with θ(0) = 0, θ(u) = v, θ(1) = 1, θ(uv) = vu, θ(v) = u, then
θ2(X) = X for any X ∈ R. This implies that θ is a ring automorphism of order
2. The Skew polynomial ring of R by θ is defined by

R[x; θ] = {a0 + a1x+ . . .+ anx
n|ai ∈ R, ∀i = 0, 1, 2, . . . , n},

where the coefficients are written on the left side of the variable x. The multi-
plication is defined by the basic rule (axi)(bxj) = aθi(b)xi+j , and the addition
is defined to be the usual addition rule of polynomials.

We can consider R as a natural extension of the ring F2 + uF2, so we can
extend the definition of the Lee weight and Hamming weight from F2 + uF2 to
the ring R.

Let wl denote the Lee weight and wH denote the Hamming weight for the
binary codes. We set

wL(x+ uy + vz + uvt) = wH(x+ y + z + t, z + t, y + t, t) ∀x, y, z, t ∈ F2.

The definition of the Lee weight and Hamming weight lead to a Gray map. By
[20] we consider the following Gray map

ϕ′ : F2 + uF2 + vF2 + uvF2 → F4
2,

ϕ′(x+ uy + vz + uvt) = (x+ y + z + t, z + t, y + t, t).

This map can be extended to Rn as follows:

ϕ : ((F2 + uF2 + vF2 + uvF2)
n, Lee weight) → (F4n

2 ,Hamming weight).

Now, let Rm = R[x;θ]
<xm−1> and let l be a positive integer. Then, the ring Rl

m is a
left Rm-module where the scalar multiplication from left is defined by

f(x)(g1(x), g2(x), ..., gl(x)) = (f(x)g1(x), f(x)g2(x), ..., f(x)gl(x)),

for every f(x) ∈ R[x; θ] and gi(x) ∈ Rm for i = 1, 2, . . . , l. Let C be a subset of
Rml. Consider the map ψ from Rml to Rl

m given by ψ(C) = (X0(x), ..., Xl−1(x))
where

Xj(x) =
m−1∑
i=0

rj,ix
i ∈ R[x, θ]

< xm − 1 >
, ∀j = 0, 1, 2, . . . , l − 1.

The map ψ is a one-to-one correspondence between the ring Rml and Rl
m.
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Definition 2.1. A nonempty subset C of Rn is called a skew cyclic code of
length n, if C satisfies the following conditions:

1. C is submodule of Rn; and

2. if X = (r0, r1, ..., rn−1) ∈ C, then the skew cyclic shift σ(X) is in C, that
is σ(X) = (θ(rn−1), θ(r0), ..., θ(rn−2)) ∈ C.

Definition 2.2. A subset C of Rn, where n = ml, is called a skew quasi-cyclic
code of length n and index l (or a skew l-QC code) if C satisfies the following
conditions:

1. C is a subspace of Rn; and

2. if X = (r0,0, r0.1, . . . , r0,l−1, r1,0, r1,1, . . . , r1,l−1, . . . , rm−1,0, rm−1,1, . . . ,
rm−1,l−1) is a codeword in C, then τθ,m,l(X) = (θ(rm−1,0), θ(rm−1,1), . . . ,
θ(rm−1,l−1), θ(r0,0), θ(r0,1), . . . , θ(r0,l−1), . . . , θ(rm−2,0), θ(rm−2,1), . . . ,
θ(rm−2,l−1)) ∈ C.

Theorem 2.1. A subset C of Rn, where n = ml, is a skew l-QC code of length
n if and only if ψ(C) is a left submodule of the ring Rl

m.

Proof. Let C be a skew l-QC code and c = (r0,0, r0,1, . . . , r0,l−1, r1,0, r1,1,
. . . , r1,l−1, . . . , rm−1,0, rm−1,1, . . . , rm−1,l−1) ∈ C. Since xm = 1 in Rm, we have

(1) xXj(x) =

m−1∑
i=0

θ(rj,i)x
i+1 =

m−1∑
i=0

θ(rj,i−1)x
i ∈ Rm,

for any j = 0, 1, . . . , l − 1 and i − 1 ∈ {0, 1, . . . ,m − 1} by taking modulo m.
Hence (xX0(x), xX1(x), . . . , xXl−1(x)) ∈ ψ(C). Then, it follows from linearity
that f(x)ψ(c) ∈ ψ(C) for any f(x) ∈ Rm. Therefore, ψ(C) is a left submodule
of Rl

m.
Conversely, suppose that Y is a left Rm-submodule of Rl

m. We claim that
X = ψ−1(Y ) ∈ Rml is a skew l-QC code. It is enough to show that C is closed
under skew cyclic shift. Let c = (r0,0, r0.1, . . . , r0,l−1, r1,0, x1,1,
. . . , r1,l−1, . . . , rm−1,0, rm−1,1, . . . , rm−1,l−1)) ∈ X. Then ψ(c) ∈ Y . By a similar
argument like in (2.1), we see that ψ(τθ,m,l(c)) = xψ(c) ∈ Y , so τθ,m,l ∈ X.
Hence X is a skew l-QC code.

Definition 2.3. Let m1,m2, . . . ,mt be positive integers and m =
∑t

i=1mi. A
subset C of Rm is called a skew generalized quasi-cyclic (skew GQC) code of block
length (m1,m2, . . . ,mt) and length m if C satisfies in the following conditions:

1. C is a subspace of Rm,

2. if X = (r0,0, . . . , r0,m1−1, r1,0, . . . , r1,m2−1, . . . , rt−1,0, . . . , rt−1,mt−1) ∈ C,
then τθ,m(X) = (θ(rt−1,0), . . . , θ(rt−1,mt−1), θ(r0,0), . . . , θ(r0,m1−1),
. . . , θ(rt−2,0), . . . , θ(rt−2,mt−1−1)) ∈ C.
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Ifm1=m2= . . . = mt = m, then a GQC code of block length (m1,m2, . . . ,mt)
is a skew t-QC code of length mt over the ring R. Let mi be as in Definition
2.3 and Ri =

R[x;θ]
<xmi−1> for any i = 1, 2, . . . , t. Assume that the multiplication is

defined by

f ′(x)(g′1(x), g
′
2(x), . . . , g

′
t(x)) = (f ′(x)g′1(x), f

′(x)g′2(x), . . . , f
′(x)g′t(x))

in which every f ′(x)g′i(x) is considered mod(x
mi−1), f ′(x) ∈ R[x; θ] and g′i(x) ∈

Ri for i = 1, 2, . . . , t. In this case, the ring R′ := R1×R2× . . .×Rt is an R[x; θ]-
submodule.

Consider the map ψ′ from Rm to R′ defined by ψ′(C) = (Y0(x), . . . , Yt−1(x))
where C is a subset of Rm and

Yj(x) =

mj+1−1∑
i=0

r′j,ix
i ∈ R[x; θ]

< xmj+1 − 1 >
,

for any j = 0, 1, ..., t− 1.
The following is a similar result to Theorem 2.1 for skew GQC codes.

Theorem 2.2. Let m1,m2, . . . ,mt be positive integers and m =
∑t

i=1mi. A
subset C of Rm is a skew GQC code of block length (m1,m2, . . . ,mt) and length
m if and only if ψ′(C) is a left submodule of the ring R′.

Proof. The proof is similar to that of Theorem 2.1.

3. Dual of SKEW QC codes and skew GQC codes

Assume that C is a skew l-QC code of length n(n = ml). LetX = (x0,0, . . . , x0,l−1,
x1,0, . . . , x1,l−1, . . . , xm−1,0, . . . , xm−1,l−1) and Y = (y0,0, . . . , y0,l−1,
y1,0, . . . , y1,l−1, . . . , ym−1,0, . . . , ym−1,l−1) be codewords in C. The Hermitian in-
ner product is defined by

< X,Y >H=

l−1∑
j=0

s−1∑
i=0

xi,jθ(yi,j),

where xi,j ∈ X and yi,j ∈ Y . The codewords X,Y are called orthogonal Hermi-
tian with respect to the Hermitian inner product if < X,Y >H= 0. The dual
code C⊥H with respect to Hermitian inner product of C is defined by

C⊥H = {X ∈ Rn | < X,Y >H= 0 , ∀Y ∈ C}.

A skew l-QC code is called Hermitian self-dual if C = C⊥H and whenever
C ⊆ C⊥H , we say that C is Hermitian self-orthogonal.

Theorem 3.1. Let C be a skew l-QC code of length n(n = ml) over R. Then,
the Hermitian dual of C is also a skew l-QC code.
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Proof. Let X = (x0,0, . . . , x0,l−1, x1,0, . . . , x1,l−1, . . . , xm−1,0, . . . , xm−1,l−1) ∈
C and Y = (y0,0, . . . , y0,l−1, y1,0, . . . , y1,l−1, . . . , ym−1,0, . . . , ym−1,l−1) ∈ C⊥H .
Since C is skew l-QC code, so (θ(xm−1,0), . . . , θ(xm−1,l−1), θ(x0,0), . . . , θ(x0,l−1),
. . . , θ(xm−2,0), . . . , θ(xm−2,l−1)) ∈ C.

Continuing this way, we haveXi = (θi(xm−i,0), . . . , θ
i(xm−i,l−1), θ

i(xm−i+1,0),
. . . , θi(xs−i+1,l−1), . . . , θ

i(xs−i−1,0), . . . , θ
i(xs−i−1,l−1)) ∈ C, for any i=1, 2, . . .,m.

Hence < X i, Y >H= 0. If i = m− 1, then θm−1(xi′,j′) = θ(xi′,j′) for any xi′,j′ ∈
X. Therefore, θ(x1,0)y0,0+. . .+θ(x1,l−1)y0,l−1+θ(x2,0)y1,0+. . .+θ(x2,l−1)y1,l−1+
. . .+ θ(x0,0)ys−1,0 + . . .+ θ(x0,l−1)ym−1,l−1 = 0. Note that θ is a ring automor-
phism of order 2. Hence, x0,0θ(ym−1,0)+. . .+x0,l−1θ(ym−1,l−1)+x1,0θ(y0,0)+. . .+
x1,l−1θ(y0,l−1)+. . .+xm−1,0θ(ym−2,0)+. . .+xm−1,l−1θ(ym−2,l−1) = 0. This gives
(θ(ym−1,0), . . . , θ(ym−1,l−1), θ(y0,0), . . . , θ(y0,l−1), . . . , θ(ym−2,0),
. . . , θ(ym−2,l−1)) ∈ C⊥H . Hence C⊥H is also a skew QC code of index l and
length n.

We can define the Hermitian dual skew GQC code of block length (m1,m2, . . . ,
mt) in a similar way. Let C be a skew GQC code of block length (m1,m2, . . . ,mt).
Suppose thatX = (x0,0, . . . , x0,m1−1, x1,0, . . . , x1,m2−1, . . . , xt−1,0, . . . , xt−1,mt−1)
and Y = (y0,0, . . . , y0,m1−1, y1,0, . . . , y1,m2−1, . . . , yt−1,0, . . . , yt−1,mt−1) are two
codewords in C. The Hermitian inner product for X and Y is defined as

< X,Y >H=

m1−1∑
j=0

x0,jθ(y0,j) +

m2−1∑
j=0

x1,jθ(y1,j) + . . .+

mt−1∑
j=0

xt−1,jθ(yt−1,j),

where xi,j ∈ X, yi,j ∈ Y for each i = 0, 1, . . . , t− 1 and j = 0, 1, . . . ,mi+1 − 1.

Theorem 3.2. The Hermitian dual of a skew GQC code of block length
(m1,m2, ...,mt) is a skew GQC code of block length (m1,m2, ...,mt).

Proof. The proof is similar to that of Theorem 3.1.

Definition 3.1. Let h(x) =
∑n

i=0 hix
i be a polynomial in the ring R[x; θ]. The

skew reciprocal polynomial of h is defined by

h∗(x) =

n∑
i=0

xn−ihi =

n∑
i=0

θi(hn−i)x
i.

If h(x) = h∗(x), then h(x) is called a self-reciprocal polynomial.

In order to describe some properties of the skew reciprocal polynomial, we
need the following morphism of rings:

Θ : R[x; θ] −→ R[x; θ],
n∑

i=0

aiX
i 7→

n∑
i=0

θ(ai)X
i.

We recall the following useful Lemma from [3, Lemma 1].
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Lemma 3.1. Let f and g be skew polynomial in R and n = deg(f). Then:
1. (fg)∗ = Θn(g∗)f∗.
2. (f∗)∗ = Θn(f).

We briefly state some facts regarding skew cyclic codes. We know that there
exists a one-to-one correspondence between the codewords (c0, c1, ..., cm−1) and
polynomials c(x) = c0+cx+...+cm−1x

m−1 in R[x; θ]. Under this correspondence
a skew cyclic code C of length n over the ring R can be considered as a principal
ideal in Rm. Among all the generators of the ideal C, there is a unique monic one
with minimal degree that divides xm−1. This polynomial is called the generator
polynomial of the skew cyclic code C and we display it by G(x). A polynomial
H(x) which satisfy in H(x)G(x) = xm − 1 is called the check polynomial of C.

If C is a skew cyclic code with generator polynomialG(x), then C⊥H is a skew
cyclic code with generator polynomial H∗(x), where H∗(x) is skew reciprocal
polynomial of the check polynomial H(x). Thus we obtain the following result.

Proposition 3.1. A skew cyclic code C of length n is a skew cyclic Hermition
self-dual if and only if G(x) = H∗(x) where G(x) is the generator polynomial of
C, H(x) is the check polynomial and H∗(x) is the skew reciprocal polynomial of
H(x).

By [2] we know that when n is an odd integer, xn − 1 factors over F2 into
pairwise coprime irreducible factors. We can consider the map R[x; θ] → F2[x; θ]
and apply Hensel’s Lemma. The factorization xn− 1 in F2[x; θ] can be uniquely
lifted to a factorization of xn − 1 over R into pairwise coprime basic irreducible
factors. Also the factorization of xn − 1 over F2 is still valid over R. Therefore,
if n is odd, then all factors of xn − 1 in R[x; θ] are just its factors in F2[x; θ].

Let C be a skew l-QC code of length n(n = ml) where m = 2am′ such that
(m′, 2) = 1 and a is a integer which dependent on m. By [17], one can write

xm
′ − 1 = f1 . . . fsh1h

∗
1 . . . hth

∗
t ,

where h∗j is the skew reciprocal polynomial of hj for j = 1, 2, . . . , t and fi is skew
self-reciprocal polynomial for any i = 1, 2, . . . , s. Also

(∗) xm − 1 = (xm
′ − 1)2

a
= f2

a

1 . . . f2
a

s h2
a

1 h
∗
1
2a . . . h2

a

t h
∗
t
2a .

We continue this section to discuss on some structural properties of 1-
generator skew QC codes and 1-generator skew GQC codes. Consider a skew l-
QC code C of length n(n = ml) over the ring R. Let F (x) = (F1(x), . . . , Fl(x)) ∈
( R[x;θ]
<xm−1>)

l where Fi(x) ∈ R[x;θ]
<xm−1> . Then R[x; θ]F (x) := {α(x)F (x)|α(x) ∈

R[x; θ]} = {(α(x)F1(x), α(x)F2(x), . . . , α(x)Fl(x))|α(x) ∈ R[x; θ]}. is called a
1-generator skew l-QC code with generator F (x). Note that for l = 1, a skew
l-QC code over R is a skew cyclic code of length m over R. Define a well defined
R-homomorphism ϕj from Rn onto Rm such that ϕj(F1(x), . . . , Fl(x)) = Fj(x).
Then ϕj(C) is a skew cyclic code of length m over R.
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Theorem 3.3. Suppose that C is a 1-generator skew l-QC code of length n(n =
ml) which is generated by F (x) = (F1(x), . . . , Fl(x)) such that ϕj(C) is a Her-

mitian self-dual code over the ring R[x;θ]
<xm−1> for any j = 1, 2, . . . , l. Then the

generator polynomial of C is

K(x).f
(2a−1)
1 . . . f (2

a−1)
s hl11 h

∗
1
2a−l1 . . . hltt h

∗
t
2a−lt ,

where K(x) ∈ R[x; θ], lr = lcm{βjr} and 0 ≤ βjr ≤ 2a for any j = 1, 2, . . . , l
and r = 1, 2, . . . , t.

Proof. Consider the homomorphism ϕj defined in the preceding paragraph.
We know that ϕj(C) is a skew cyclic code of length m over the ring Rm for any
j = 1, 2, . . . , l. So ϕj(C) has a generator polynomial such as Gj(x) such that
Gj(x)|xm − 1. By factorization (∗) for xm − 1 we can write

Gj(x) = f1
αj1 . . . fs

αjsh1
βj1h∗1

ηj1 . . . ht
βjth∗t

ηjt ,

where 0 ≤ αji ≤ 2a and 0 ≤ βjk, ηjk ≤ 2a for any i = 1, 2, . . . , s and k =
1, 2, . . . , t. The following polynomial is the check polynomial of ϕj(C): Hj(x) =

f1
2a−αj1 . . . fs

2a−αjsh
2a−βj1

1 h∗1
2a−ηj1 . . . h

2a−βjt

t h∗t
2a−ηjt .

Assume that deg(f
2a−αji

i ) = ni, deg(h
2a−βjk

k ) = mk and deg(h
∗
k
2a−ηjk) = m′

k.
We use Lemma 3.1 to obtain H∗

j (x). Thus

H∗
j (x) = Θ

∑s
i=1 ni+

∑t
j=1 mj+

∑t−1
j=1 mj

′
(h∗jt

2a−ηjt)∗×

Θ
∑t

i=1 ni+
∑t−1

j=1 mj+
∑t−1

j=1 m
′
j (h

2a−βjt

jt )∗×

Θ
∑t

i=1 ni+
∑t−1

j=1 mj+
∑t−2

j=1 m
′
j (h∗j,t−1

2a−ηj,t−1)×
...

Θη1(f
2a−αj1

j1 )∗.

By proposition 3.1, a skew cyclic code generated by the polynomial generator
Gj(x) is skew Hermitian self-dual if and only if Gj(x) = H∗

j (x). Therefore,
αji = 2a − αji and ηjk = 2a − βjk. Thus

(∗∗) Gj(x) = f1
2a−1

. . . fs
2a−1

h1
βj1h∗1

2a−βj1 . . . ht
βjth∗t

2a−βjt .

We know that Hj(x) and Gj(x) are the check polynomial and the generator
polynomial for the skew cyclic code ϕj(C), respectively. Thus Hj(x).Gj(x) =
xm − 1. This implies that H(x) = lcm{H1(x),H2(x), . . . , Hl(x)} is the check
polynomial of C. Let G′ = lcm{Gj(x)}lj=1. Therefore,

(1) G′(x) = f1
2a−1

. . . fs
2a−1

h1
l1h∗1

2a−l1 . . . ht
lth∗t

2a−lt ,

where lr = lcm{βjr} for each r = 1, 2, . . . , t. If H(x) and G(x) are check
polynomial and generator polynomial for C respectively, then, G(x).H(x) =
xm − 1. It is clear that G(x)|G′(x). By (1), there exists a polynomial such as

K(x) ∈ R[x; θ] and G(x) = K(x).f1
2a−1

. . . fs
2a−1

h1
l1h∗1

2a−l1 . . . ht
lth∗t

2a−lt .
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Consequently, by the factorization (∗), we can write

(2)
R[x; θ]

< xm − 1 >
= (

s⊕
i=1

R[x; θ]

< fi >
)⊕ (

t⊕
j=1

(
R[x; θ]

< hj >
⊕ R[x; θ]

< h∗j >
)).

Consider the following notations

Gi =
R[x; θ]

< fi >
, H ′

j =
R[x; θ]

< hj >
, H ′′

j =
R[x; θ]

< h∗j >
.

Let X,Y ∈ Rl
m where X = (X1, . . . , Xl) and Y = (Y1, . . . , Yl). By (2), we can

writeXi = (xi1, . . . , xis, x
′
i1, x

′′
i1, . . . , x

′
it, x

′′
it) and Yi = (yi1, . . . , yit, y

′
i1, y

′′
i1, . . . , y

′
it,

y′′it) where xij , yij ∈ Gj , x
′
ik, y

′
ik ∈ H ′

k and x′′ik, y
′′
ik ∈ H ′′

k for any i = 1, 2, . . . , l,
j = 1, 2, . . . , s and k = 1, 2, . . . , t. Therefore,

< X,Y >H=
l−1∑
j=0

s∑
i=1

xjiθ(yji) +
l−1∑
j=0

t∑
k=1

x′jkθ(y
′
jk) +

l−1∑
j=0

t∑
k=1

x′′jkθ(y
′′
jk).

Clearly < X,Y >H= 0 if and only if

l−1∑
j=0

s∑
i=1

xjiθ(yji) = 0,
l−1∑
j=0

t∑
k=1

x′jkθ(y
′
jk) = 0,

t∑
k=1

x′′jkθ(y
′′
jk) = 0.

Thus we have the following result about characterization of skew Hermitian
self-dual codes over R[x; θ].

Corollary 3.1. A skew l-QC code of length n(n = ml) is Hermitian self-dual
if and only if C = (

⊕s
i=1Ci)⊕ (

⊕t
j=1(C

′
j ⊕C ′⊥

j )) where Ci is a skew Hermitian
self-dual code over Gi for any i = 1, 2, . . . , s, C ′

j is a linear code over H ′
j and

C ′⊥
j is its Hermitian dual.

Our next step is to introduce the generator polynomial and the check poly-
nomial for skew GQC codes. Assume that C is a skew GQC code of block length
(m1,m2, . . . ,mt) and length m =

∑t
i=1. A 1-generator skew GQC code over R

generated by F (x) = (F1(x), F2(x), . . . , Ft(x)) where Fi(x) ∈ R[x;θ]
<xmi−1> is defined

as
R[x; θ]F (x) = {α(x)F1(x), . . . , α(x)Ft(x)|α(x) ∈ R[x; θ]}.

In a similar way for skew l-QC codes we can consider a well defined R-
homomorphism ψi from R′ to Ri given by ψi(F (x)) = Fi(x). Then ψi(C) is a
skew cyclic code of lengthmi and generated by Fi(x) in Ri. Therefore, ψi(x) has
a generator polynomial such as Gi(x) where Gi(x) is a right divisor of xmi − 1.
Therefore, Hi(x) =

xmi−1
Gi(x)

is the check polynomial of ψi(C). This implies that

H(x) = lcm{Hi(x)}ti=1 is the check polynomial for C. Let C be a skew GQC
code of block length (m1,m2, . . . ,mt). We know that

xmi − 1 = fi1 . . . fishi1h
∗
i1 . . . hikh

∗
ik,
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where fir is a skew self-reciprocal polynomial and h∗ir′ is the skew reciprocal
polynomial of hir′ for any r = 1, 2, . . . , s and r′ = 1, 2, . . . , k. In a similar way
for skew l-QC codes we can write the following factorization for Ri.

(3) Ri =
R[x; θ]

< xmi − 1 >
= (

s⊕
r=1

R[x; θ]

< fir >
)⊕ (

k⊕
r′=1

(
R[x; θ]

< hir′ >
⊕ R[x; θ]

< h∗ir′ >
)).

Let X,Y ∈ R′ where X = (X1, X2, . . . , Xt) and Y = (Y1, Y2, . . . , Yt) such that

Xi, Yi ∈ R[x;θ]
<xmi−1> for each i = 1, 2, . . . , t. By (3), Xi and Yi are as follows:

Xi = (xi1, . . . , xis, x
′
i1, x

′′
i1, . . . , x

′
it, x

′′
it)

Yi = (yi1, . . . , yis, y
′
i1, y

′′
i1, . . . , y

′
it, y

′′
it),

where xir, yir ∈ R[x;θ]
<fir>

, x′ir′ , y
′
ir′ ∈

R[x;θ]
<hir′>

and x′′ir′ , y
′′
ir′ ∈

R[x;θ]
<h∗

ir>
. Therefore,

< X,Y >H=
t∑

i=1

s∑
r=1

xi,rθ(yir) +
t∑

i=1

k∑
r′=1

x′ir′θ(y
′
ir′) +

t∑
i=1

k∑
r′=1

x′′ir′θ(y
′′
ir′).

Clearly < X,Y >H =0 if and only if

t∑
i=1

s∑
r=1

xi,rθ(yir) = 0,

t∑
i=1

k∑
r′=1

x′ir′θ(y
′
ir′) = 0

and
∑t

i=1

∑k
r′=1 x

′′
ir′θ(y

′′
ir′) = 0. Hence we have the following result.

Corollary 3.2. A skew GQC code of block length (m1,m2, . . . ,mt) is a self-dual
Hermitian if and only if

C = (
s⊕

r=1

Cr)⊕ (
k⊕

r′=1

(C ′
r′ ⊕ C ′⊥H

r′ )),

where Ci is a skew Hermitian self-dual over R[x;θ]
<xmi−1>

for any r = 1, 2, . . . , s and

C ′
r′ is a linear code over R[x;θ]

<hir′>
and C ′⊥H

r′ is its dual Hermitian over R[x;θ]
h∗
ir′

.

4. Gray image of skew GQC codes and skew QC codes

Let X = (X0, X1, . . . , X4n−1) = (X(0), X(1), X(2), X(3)) ∈ F4n
2 where X(i) ∈ Fn

2

for all i = 0, 1, 2, 3. We define the following map

Υ : F4n
2 → F4n

2 ,

Υ(X) = (η(X(0)), η(X(1)), η(X(2)), η(X(3))),

where η is a map from Fn
2 to Fn

2 with the property that

η(X(i)) = (Xi,n−1, Xi,0, . . . , Xi,n−2),
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for every X(i) = (Xi,0, Xi,1, Xi,n−1) where Xi,j ∈ F2 for j = 0, 1, . . . , n − 1.
Also we consider the map λ from F4n to F4n given by λ(X(0), X(1), X(2), X(3)) =
(X(0), X(2), X(1), X(3)).

Definition 4.1. A code C of length 4n over F2 is said l-QC code of index 4 if
Υ(C) = C.

Proposition 4.1. Assume σθ is the skew cyclic shift on Rn, Υ is as above and
ϕ is the Gray map from Rn to F4n

2 . Then ϕσθ = λΥϕ.

Proof. LetXi = xi+uyi+vzi+uvti be elements of R for each i = 0, 1, 2, . . . , n−
1. By definition of the Gray map we have ϕ(X0, X1, ..., Xn−1) = (x0 + y0 + z0 +
t0, x1 + y1 + z1 + t1, . . . , xn−1 + yn−1, zn−1 + tn−1, z0 + t0, . . . , zn−1 + tn−1, y0 +
t0, . . . , yn−1+tn−1, t0, . . . , tn−1). We apply Υ, so Υ(ϕ(X0, X1, ·, Xn−1)) = (xn−1+
yn−1+zn−1+tn−1, x0+y0+z0+t0, . . . , xn−2+yn−2+zn−2+tn−2, zn−1+tn−1, z0+
t0, . . . , zn−2+ tn−2, yn−1+ tn−1, y0+ t0, . . . , yn−2+ tn−2, tn−1, t0, . . . , tn−2). If we
apply λ, then λ(Υ(ϕ(X0, X1, . . . , Xn−1)) = (xn−1+yn−1+zn−1+ tn−1, x0+y0+
z0+t0, . . . , xn−2+yn−2+zn−2+tn−2, yn−1+tn−1, y0+t0, . . . , yn−2+tn−2, zn−1+
tn−1, z0 + t0, . . . , zn−2 + tn−2,+tn−2, tn−1, t0, . . . , tn−2).

On the other hand, we have σθ(X0, X1, . . . , Xn−1) = (θ(Xn−1), θ(X0), . . . ,
θ(Xn−2)). We apply ϕ, so ϕ(σθ(X0, X1, . . . , Xn−1)) = ϕ(θ(Xn−1), θ(X0), . . . ,
θ(Xn−2)) = (xn−1 + yn−1 + zn−1 + tn−1, x0 + y0 + z0 + t0, . . . , xn−2 + yn−2 +
zn−2 + tn−2, . . . , yn−1 + tn−1, y0 + t0, . . . , yn−2 + tn−2 + tn−2, zn−1 + tn−1, z0 +
t0, . . . , zn−2 + tn−2, tn−1, t0, . . . , tn−2).

Theorem 4.1. Let C be a skew cyclic code of length n over the ring R. Then
the Gray image of C is permutation equivalent to skew 4-QC code of index 4
and length 4n over F2.

Proof. We know that σθ(C) = C and ϕ(σθ(C)) = C. By Proposition 4.1,
ϕ(σθ(C)) = ϕ(C) = λ(Υ(ϕ(C))). So we can say that ϕ(C) is permutation equiv-
alent to l-QC code of index 4 and length 4n over F2.

Let Γ be a map from F4n
2 to F4n

2 given by Γ(X) = (ξ(X(0)), ξ(X(1)), ξ(X(2)),
ξ(X(3))), where ξ is the map from Fn

2 to Fn
2 given by

ξ(X(i)) = ((X(i,m−1)), (X(i,0)), . . . , (X(i,m−2))),

for everyX(i) = (X(i,0), . . . , X(i,m−1)) whereX(i,j) ∈ Fl
2 for all j = 0, 1, . . . ,m−1.

A code of length 4n over F2 is called l-QC code of index 4 if Γ(C) = C.

Proposition 4.2. Let τθ,m,l be a skew QC shift on Rn and ϕ be the Gray map
over Rn. Then ϕτθ,m,l = λΓϕ.

Proof. The proof is similar to the proof of the Proposition 4.1.

Theorem 4.2. Let C be a skew l-QC cyclic code of length n(n = ml). Then, C
is permutation equivalent to l-QC code of index 4 and with length 4n over F2.
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Proof. Since C is a skew QC code, so τθ,m,l(C) = C. Also ϕ(τθ,m,l(C)) = ϕ(C)
and by the previous Proposition ϕ((τθ,m,l(C)) = λΥϕ(C). This implies that
ϕ(C) is permutation equivalent to l-QC code of index 4 and with length 4n over
F2.

We finish by investigating the above results for skew GQC codes. Suppose
that m =

∑t
k=1mk and X = (X0, X1, . . . , X4m−1) = (X(0), X(1), X(2), X(3)) ∈

F 4m
2 for i = 0, 1, 2, 3. Consider the map Γ′ from F4m

2 to F4m
2 given by Γ′(X) =

(ξ′(X(0)), ξ
′(X(1)), ξ

′(X(2)), ξ
′(X(3))), where ξ

′ is the map from Fm
2 to Fm

2 given
by ξ′(X(i)) = (X(i,m−1), X(i,0), . . . , X(i,m−2)), for any X(i) = (X(i,0), ..., X(i,m−1))
such that X(i,j) ∈ Fmk

2 for j = 0, 1, . . . ,m− 1. Also let λ′ be a map from 4m to
4m given by λ′(X(0), X(1), X(2), X(3)) = (X(0), X(2), X(1), X(3)).

Definition 4.2. A code C of length 4m over F2 is called GQC code of index 4
if Γ′(C) = C.

By introduce the above maps and in similar ways of Proposition 4.1 and
Theorem 4.1 we have the following results.

Theorem 4.3. Let τθ,m be the skew GQC shift on Rm where m =
∑t

k=1mk

and ϕ be the Gray map from Rm to F 4m
2 . Then ϕτθ,m = λ′Γ′ϕ.

Theorem 4.4. The Gray image a skew GQC code over R of length m and block
length (m1,m2, ...,mt) is permutation equivalent to skew GQC code of index 4
and length 4m over F2.
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