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Abstract. In this paper, we study some algebraic structural properties of skew quasi
cyclic codes and skew generalized quasi-cyclic codes over the ring R = Fy + ulFy + vlFo +
wvlFy where u? = v? = 0 and wv = vu. We discuss on Hermitian dual of these classes of
codes over R. Then, we investigate on the generator polynomials and the parity-check
polynomials of 1-generator skew QC codes and 1-generator skew GQC codes. Finally,
we show that the Gray image of a skew quasi-cyclic code over R is a skew [-quasi-cyclic
code of index 4 and the Gray image of skew GQC code over R is a skew GQC code of
index 4.
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1. Introduction

Algebraic coding theory is an area of discrete applied mathematics that is con-
cerned with developing error-control codes and encoding/decoding procedures.
Many areas of mathematics are used in coding theory, and we focus on the in-
terplay between algebra and coding theory. Cyclic codes over finite fields have
been studied since the late 1950 and play a significant role in the coding theory.
In 1994 Hammons et al. [12] studied codes over Zy4, then a lot of researches went
towards studying codes over Z4. Bonnecaze and Udaya [5] have studied cyclic
codes over the ring F +uFy; u? = 0. This ring is useful because it shares many
properties of Z4. A complete structure of cyclic codes over Z4 of odd length has
been given in [16].

*. Corresponding author
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Recently, it has been shown that codes over finite rings are an important class
of codes. Quasi-cyclic (QC) codes are a natural and remarkable generalization
of cyclic codes. QC code of index [ over finite ring, defined by the property
that a cyclic shift of a codeword by [ places is another codeword, generalize the
class of cyclic codes (I = 1). Skew polynomial rings form an important class of
non-commutative rings. Boucher, Geiselmann and Ulmer in [4] and [10] studied
linear and cyclic codes over skew polynomial rings. Also skew QC codes are
constructed in [1] with the property that | < # > | = m. The algebraic structure
of generalized quasi-cyclic (GQC) codes over finite fields were introduced by Siap
and Kulhan in [18]. Since then, some properties of these codes were studies by
Esmaeili and Yari in [9]. In [7], Cao studied GQC code of arbitrary length over
finite fields. Cao investigated structural properties of 1-generator GQC code.
Also GQC codes over Galois rings were introduced by Cao.

In this paper we firstly study some basic properties of the ring R = Fy +
uFy + vFy + uvFy where u? = v? = 0 and uv = vu. Also we organize basic
notations of skew QC and skew GQC codes. In Section 3 we discuss on the dual
of skew QC and skew GQC codes. Also we obtain a necessary and sufficient
condition on self-dual Hermitian skew QC codes and self-dual Hermitian skew
GQC codes. Finitely we investigate the Gray image of skew QC codes and skew
GQC codes over the ring R in Section 4.

2. Preliminaries

Let F, be a finite field of cardinality g. A k-dimensional vector subspace
C of the Fy-vector space Fy is called a linear (n,k)-code over F,. A lin-
ear code C is called a cyclic code if whenever (ag,ai,...,a,—1) € C, then
(an—1,a0,a1,...,an—2) € C. In order to convert the combinatorial structure
of cyclic codes into an algebraic one, we consider the following correspondence:

m: Fy — Fylz]/(z" = 1),
1

(ag,ai,...,an—1) —ap+ar1z+ ...+ ap_12" .

The mapping 7 is a linear transformation of vector spaces over F,. Then a
nonempty subset C' of F}' is a cyclic code if and only if 7(C) is an ideal of
Fy[z]/(z" —1). We will sometimes identify Fy with Fg[z]/(2" —1), and a vector
u = (ug,uy,...,up—1) with the polynomial u(x) = Z?:_ol izt

The notion of skew cyclic codes introduced in [4] as a generalization of cyclic
codes. Let 6 be an automorphism of F,. A #-cyclic code (or skew cyclic code)

is a linear code C with the property that
(ag,a1,...,an—1) € C = (0(an—1),0(ap),...,0(an—2)) € C.

It is easy to check that cyclic codes correspond to the case where 6 is the identity
mapping.
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Throughout this paper we consider the ring R = Fo + ulFy + vFy 4 uvlFg

where u? = v?> = 0 and wv = vu. This ring is a Frobenius ring of characteristic
2. Since

u(Fy + uFg + vIFy + uvFs) & v(Fo + ulFy + vFo + uvlFy)
and

v(Fo + uFy + vFo + wvlFy) ¢ u(Fo + ulFy + vFo + uvlFy)

so R is not a finite chained ring. Note that R is a local ring with the maximal
ideal I, = {0,u,v,u + v, uv,u + uv,v + uv,u + v + uv}, since R = va ~ T,
and R = {0+ 1, ,} U{l+1,,}. If we define the non-trivial ring homomorphism
6 from R to R with 6(0) = 0,0(u) = v,0(1) = 1,0(uv) = vu,0(v) = u, then
6?(X) = X for any X € R. This implies that @ is a ring automorphism of order
2. The Skew polynomial ring of R by € is defined by

Rlz;0] = {ap + a1z + ... + apz"|a; € R,Yi=0,1,2,...,n},
where the coefficients are written on the left side of the variable . The multi-
plication is defined by the basic rule (az?)(bz’) = af?(b)z**7, and the addition
is defined to be the usual addition rule of polynomials.

We can consider R as a natural extension of the ring Fo 4+ ulF2, so we can
extend the definition of the Lee weight and Hamming weight from Fy + ulFo to
the ring R.

Let w; denote the Lee weight and wy denote the Hamming weight for the
binary codes. We set

wr(z+uy+vz+uwt) =wg(z+y+z+tz+t,y+tt) VeyztecFa
The definition of the Lee weight and Hamming weight lead to a Gray map. By
[20] we consider the following Gray map
¢ : Fy 4+ uFy 4+ vFy + uvFy — F3,
(x+uy+vzt+uvt)=(x+y+z+t,z+ty+tt).
This map can be extended to R™ as follows:
¢ : ((Fy + uFy + vFy 4+ uvFa)™, Lee weight) — (F3", Hamming weight).
Now, let R, = <f,£fi61]> and let [ be a positive integer. Then, the ring R!, is a
left R,,-module where the scalar multiplication from left is defined by

f(@)(91(2), g2(), . gi(2)) = (f(2)g1(2), f(x)g2(2), ..., f(2)g1()),

for every f(x) € R[z;0] and g;(z) € Ry, for i =1,2,...,1. Let C be a subset of
R™. Consider the map 1 from R™ to Rl given by ¢(C) = (Xo(z), ..., X;_1(z))
where

m—1

X](:c) = Z ’r‘jJ'ﬂZi S

1=0

Rz, 0]

_ Vj=0,1,2,...,1 —1.
<zxzm—1> J

The map 1 is a one-to-one correspondence between the ring R™ and R! .
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Definition 2.1. A nonempty subset C' of R" is called a skew cyclic code of
length n, if C satisfies the following conditions:

1. C is submodule of R"; and

2. if X = (ro,71,...,rn—1) € C, then the skew cyclic shift o(X) is in C, that
is o(X) = (0(rp-1),0(rg), ...,0(rn—2)) € C.

Definition 2.2. A subset C' of R", where n = ml, is called a skew quasi-cyclic
code of length n and index | (or a skew I-QC code) if C satisfies the following
conditions:

1. C is a subspace of R"; and

2.49f X = (700,701 sT00—1>T1,05T1,1s > TLi=Ts- > Tm—1,0 Tm—1,1,- - -,
Tm—1,-1) 18 a codeword in C, then 79 1(X) = (0(rm-1,0),0(rm-1,1)s-- >
O(rm—1,1-1),0(r0,0),0(ro,1), -, 0(ro1—1), -, 0(rm-20),0(rm-21),-- -,
Q(Tm—z,l—l)) eC.

Theorem 2.1. A subset C' of R", where n = ml, is a skew [-QC code of length
n if and only if ¥(C) is a left submodule of the ring R., .

Proof. Let C be a skew [-QC code and ¢ = (r0,0,70,1,---,70,—1,71,0, 71,1,
Ty T 1,05 Tm—1,15 - - -, Tm—1,1-1) € C. Since 2™ = 1 in Ry, we have
m—1 m—1
= .
(1) 2 Xj() =Y 0(rj)at = 0(rji1)a’ € Ry,
i= i=0

for any j = 0,1,...,l —1and i — 1 € {0,1,...,m — 1} by taking modulo m.
Hence (zXo(z),2X1(z),...,2X;—1(z)) € ¥(C). Then, it follows from linearity
that f(z)y(c) € ¥(C) for any f(z) € R,,. Therefore, (C) is a left submodule
of RL,.

Conversely, suppose that Y is a left R,,-submodule of Rl,. We claim that
X =97 1(Y) € R™ is a skew I-QC code. It is enough to show that C is closed

under skew cyclic shift. Let ¢ = (10,0,70.15---:70,1—1,71,0, 1,15
e Ty Tm—=1,0 Tm—1,15- - -, Tm—1,—1)) € X. Then ¢(c) € Y. By a similar
argument like in (2.1), we see that ¥(79m (c)) = z9(c) € Y, s0 Tgm; € X.
Hence X is a skew [-QC code. O
Definition 2.3. Let mi, ma, ..., m; be positive integers and m = 25:1 m;. A
subset C of R™ is called a skew generalized quasi-cyclic (skew GQC) code of block
length (my1,ma,...,my) and length m if C satisfies in the following conditions:

1. C is a subspace of R™,

2. ZfX = (TO,Oa"'7r0,m17177ﬂ1,07'"arl,mgfla"'77"2571,07"'7rt71,mt71) S C;
then Tom(X) = (0(ri=1,0)s--,0(re—1,m—1),0(r0,0); - - -, 0(ro,m, 1),
ceey (9(7“15,270), RN G(T‘tfgymt_lfl)) cC.
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If mi=mo=... = my = m, then a GQC code of block length (mq, ma, ..., m;)
is a skew t-QC code of length mt over the ring R. Let m; be as in Definition
2.3 and R; = % for any ¢ = 1,2,...,t. Assume that the multiplication is
defined by

f'@)(g1(x), g5(2), -, gt(@) = (f'(2)g"1(2), [ (2)g o (2), ... ['(2)ds(2)

in which every f’(x)g.(z) is considered mod(z™ —1), f'(x) € R[z;0] and ¢}(x) €
R; fori=1,2,...,t. In this case, the ring R’ := Ry X Ry X ... X Ry is an R[z;6)]-
submodule.

Consider the map ¢’ from R™ to R’ defined by ¢'(C) = (Yo(z),...,Yi—1(x))
where C' is a subset of R and

m’il I
s a; < g+l — 1>

for any j =0,1,...,t — 1.
The following is a similar result to Theorem 2.1 for skew GQC codes.

Theorem 2.2. Let my,ma,...,m; be positive integers and m = Zﬁzl m;. A
subset C' of R™ is a skew GQC code of block length (m1,ma,...,m¢) and length
m if and only if Y'(C) is a left submodule of the ring R'.

Proof. The proof is similar to that of Theorem 2.1. O

3. Dual of SKEW QC codes and skew GQC codes

Assume that C'is a skew [-QC code of length n(n = ml). Let X = (zo0,...,%0,-1,

T1,05- > L1153 Tm—1,05- -y Tm—1,4—1) and Y = (¥0,05 - - -+ Y0,1—15
Y10y YL i1+ >Ym—1,0,- - - »Ym—1,—1) be codewords in C. The Hermitian in-
ner product is defined by

-1 s—1
< XY >p=Y Y i0(yij),
=0 i=0

where z; ; € X and y; ; € Y. The codewords X, Y are called orthogonal Hermi-
tian with respect to the Hermitian inner product if < X,Y >gx= 0. The dual
code C# with respect to Hermitian inner product of C' is defined by

Cti={XeR"| <X,Y >y=0,VY € C}.

A skew [-QC code is called Hermitian self-dual if C = C# and whenever
C C C*# | we say that C is Hermitian self-orthogonal.

Theorem 3.1. Let C be a skew I-QC code of length n(n = ml) over R. Then,
the Hermitian dual of C is also a skew I-QC code.
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Proof. Let X = (.21?0,0, e T00—15L1,05 - -5 X101y -5 Tm—1,05- -+ 5 xmfl,lfl) S
Cand Y = (40,05 Y041 Y1,0 - s Yliots- s Ym—1,0 - s Ym—1,4-1) € CLH.
Since C' is skew [-QC code, 50 (0(zpm—1,0),---,0(Xm—1,-1),0(x0,0),--.,0(x01-1),
...,Q(xm_g,()),...,e(xm_g’l_l)) S C ' ' '
Continuing this way, we have X* = (6" (m—i0) - - -0 (Tm—iji—1), 0 (Tm—i+1,0),
o (@s—ip10-1)s -, 0 (2s—i—10), - -, 0 (2s—i—10-1)) € C, forany i=1,2,...,m.
Hence < XY >p=0. If i = m — 1, then 6™ ! (zy j;) = O(xy ;) for any zy j €
X. Therefore, 6(x1,0)y0,0+. . -+0(z1,1-1)y01-1+0(x2,0)y1,0+- . . +0(22,1-1)y1,1-1+
oo+ 0(x00)Ys—1,0 + -+ 0(201-1)Ym—1,-1 = 0. Note that 0 is a ring automor-
phism of order 2. Hence, 20 00(ym—1,0)+- - -+20,1-10(Ym—1,1-1)+21,00(yo,0)+. . .+
211-10(Yoi-1)+- -+ Tm-100Ym—20)+- - -+ Tm-11-10(Ym—2,-1) = 0. This gives
(OWm-1,0),-->0Ym-11-1),0(0,0),---0Wo,1-1); - -, 0(YUm—2,0),
ooy 0(Ym—2,-1)) € Ctu. Hence Ct# is also a skew QC code of index ! and
length n. O

We can define the Hermitian dual skew GQC code of block length (mq,ma, ...,
my) in a similar way. Let C be a skew GQC code of block length (mq,ma, ..., my).
Suppose that X = ([E(Lo, <y XOmMy—15L1,05 - -+ 5 L1 mog—1y - -« 3 Lt—1,05 - - ,xt_Lmt_l)
and Y = (40,0, sY0,mi—1:Y1,05 - - s Ylmo—1y - - s Yt—1,05 - - - s Yt—1,m¢—1) are two
codewords in C. The Hermitian inner product for X and Y is defined as

m1—1 mo—1 me—1
<XY >p= Y wo0os)+ Y w1 0ui) +o+ Y we10We1y),
=0 j=0 j=0

where z; ; € X, y;; € Y foreachi=0,1,...,t—1and j =0,1,...,m;y1 — L.

Theorem 3.2. The Hermitian dual of a skew GQC code of block length
(my,ma,...,my) is a skew GQC code of block length (m1, ma,...,my).

Proof. The proof is similar to that of Theorem 3.1. O
Definition 3.1. Let h(z) = > I, hia' be a polynomial in the ring R[xz;6]. The

skew reciprocal polynomial of h is defined by

h*(z) = zn: " hy = zn: 0% (hy_i) .
1=0 1=0

If h(x) = h*(x), then h(zx) is called a self-reciprocal polynomial.

In order to describe some properties of the skew reciprocal polynomial, we
need the following morphism of rings:

© : R[z;0] — R[x; 0],
> aiX =) 6(a) X
=0 i=0

We recall the following useful Lemma from [3, Lemma 1].
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Lemma 3.1. Let f and g be skew polynomial in R and n = deg(f). Then:
1. (fg) =0"(g")f"
2. (f*)r =0"(f).

We briefly state some facts regarding skew cyclic codes. We know that there
exists a one-to-one correspondence between the codewords (cg, ¢, ..., ¢p—1) and
polynomials ¢(x) = co+cp+...+cm_12™ 1 in R[x;0]. Under this correspondence
a skew cyclic code C of length n over the ring R can be considered as a principal
ideal in R,,. Among all the generators of the ideal C, there is a unique monic one
with minimal degree that divides ™ —1. This polynomial is called the generator
polynomial of the skew cyclic code C' and we display it by G(z). A polynomial
H (x) which satisfy in H(z)G(x) = 2™ — 1 is called the check polynomial of C.

If C'is a skew cyclic code with generator polynomial G(z), then C1# is a skew
cyclic code with generator polynomial H*(z), where H*(x) is skew reciprocal
polynomial of the check polynomial H(z). Thus we obtain the following result.

Proposition 3.1. A skew cyclic code C of length n is a skew cyclic Hermition
self-dual if and only if G(x) = H*(x) where G(x) is the generator polynomial of
C, H(z) is the check polynomial and H*(x) is the skew reciprocal polynomial of

By [2] we know that when n is an odd integer, " — 1 factors over Fy into
pairwise coprime irreducible factors. We can consider the map R[x; 0] — Fa|x; 0]
and apply Hensel’s Lemma. The factorization 2™ — 1 in Fa[z; 0] can be uniquely
lifted to a factorization of ™ — 1 over R into pairwise coprime basic irreducible
factors. Also the factorization of ™ — 1 over Fy is still valid over R. Therefore,
if n is odd, then all factors of ™ — 1 in R|x; 6] are just its factors in Fa[z; 6].

Let C be a skew [-QC code of length n(n = ml) where m = 2%m’ such that
(m’,2) =1 and a is a integer which dependent on m. By [17], one can write

™ —1=f1... fshih}i ... hihi,

where £ is the skew reciprocal polynomial of h; for j = 1,2,...,t and f; is skew
self-reciprocal polynomial for any i = 1,2,...,s. Also
(%) a™ 1= (" 1) =2 R R R

We continue this section to discuss on some structural properties of 1-
generator skew QC codes and 1-generator skew GQC codes. Consider a skew [-
QC code C of length n(n = ml) over the ring R. Let F'(x) = (Fi(x),..., Fi(z)) €
(ZHO ) where Fy(z) € =S Then R[z;0]F(z) = {a(z)F(z)a(z) €
Rlz; 0]} = {(a(x)Fi(z), a(x)Fa(z), ..., a(x)F(x))|a(x) € Rlz;0]}. is called a
1-generator skew [-QC code with generator F'(z). Note that for [ = 1, a skew
[-QC code over R is a skew cyclic code of length m over R. Define a well defined
R-homomorphism ¢; from R"™ onto R,, such that ¢;(Fi(z),..., Fi(x)) = Fj(x).
Then ¢;(C) is a skew cyclic code of length m over R.
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Theorem 3.3. Suppose that C' is a 1-generator skew [-QC' code of length n(n =
ml) which is generated by F(x) = (Fi(x),...,Fi(x)) such that ¢;(C) is a Her-

<fr[fi€1]> for any 7 = 1,2,...,1. Then the

mitian self-dual code over the ring
generator polynomial of C' is

K(x) f 70 e phpy o gl
where K(z) € R[z;0], I, = lem{Bj} and 0 < B < 2% for any j = 1,2,...,1
andr=1,2,...,t.
Proof. Consider the homomorphism ¢; defined in the preceding paragraph.
We know that ¢;(C) is a skew cyclic code of length m over the ring R,, for any

j=12,...,1. So ¢;(C) has a generator polynomial such as G;(z) such that
Gj(x)|x™ — 1. By factorization (x) for 2™ — 1 we can write

Gj(a) = o0 [P p Py,

where 0 < aj; < 2% and 0 < Bjg,njp < 29 for any ¢ = 1,2,...,s and k =
1,2,...,t. The following polynomial is the check polynomial of ¢;(C): H;(x)
2 fSQG'—OLjSh?a_ﬁjl hf“—nﬂ o h?a_ﬁjthszG—ﬂjt‘

Assume that deg(ffa_aﬁ) =ny, deg(hza_ﬁjk) = my and deg(h}> ~%) = m}.
We use Lemma 3.1 to obtain H7(x). Thus

Hi(z) = @Xi=1 (CEDWIREUIED Dy ™y’ (2 iy
J Jt
O iy i m Y m) (R =Pty
J

t . t—1 . t—2 .
@Zi=1"Z+Zj:1mf+zj:1mj(hjt_12a Mit=1) x

oM (S )

By proposition 3.1, a skew cyclic code generated by the polynomial generator
Gj(z) is skew Hermitian self-dual if and only if Gj(z) = H;(z). Therefore,
Q4 = 20 — Qg and Nik = 20 — Bjk' Thus

() Gj(z) = f12a71 .. .f82a71h16j1h"1‘2a_6j1 . htﬁjthfa_ﬁﬂ,

We know that Hj(xz) and Gj(x) are the check polynomial and the generator
polynomial for the skew cyclic code ¢;(C), respectively. Thus H;(z).G;(x) =
2™ — 1. This implies that H(x) = lem{H1(x), Ha(z), ..., H;(z)} is the check
polynomial of C. Let G' = lem{G,(x) 9:1- Therefore,

(1) Gl(x) = fl ... fszailhlllhTQ‘l—h o htlthIQ‘l—lt7

where I, = lem{B;} for each r = 1,2,...,t. If H(z) and G(z) are check
polynomial and generator polynomial for C respectively, then, G(z).H(x) =
™ — 1. Tt is clear that G(x)|G'(z). By (1), there exists a polynomial such as
K(z) € Rlz;0] and G(z) = K(2). 2" . f2 b =0 phepy2=h. O

20,71
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Consequently, by the factorization (x), we can write
R[x; ] : N, Rz o Blz:0]
2 — = :
2) <am—1> (@<fz €B< <hj>))

j=1

Consider the following notations

Rlx; 0] H = Rlz; 0] H! — Rlz; 0]
<fi> ) <h;> 7 <hi>

Gi =

Let X,Y € R., where X = (X1,...,X;) and Y = (Y3,...,Y]). By (2), we can
write X; = (lea-' y Lisy L ;17 ;/1,...,$;t,$;;) and Y; = (yila"'7yitayyl;17y§/17"'7y7/jt7
yiy) where x5, yi; € Gy, oyl € Hy and 2}, yl, € HY for any i =1,2,...,1,
j=12,...,sand k=1,2,... 1. Therefore

-1 s -1 ¢ -1
<XY >u=Y Y wiabyi) + > winbWi) + DD w0Wih)-

- t
j=0 i=1 7=0 k=1 7=0 k=1

Clearly < X, Y >p= 0 if and only if

s t

-1
Zzzjie(yﬂ = sz;ke ka ) =0, Zm yjk’ ) =0.
7=01

i=1 7=0 k=1

Thus we have the following result about characterization of skew Hermitian
self-dual codes over R[z;6)].

Corollary 3.1. A skew [-QC code of length n(n = ml) is Hermitian self-dual
if and only if C = (B;_, Ci) & (@2:1((7;' ) C'J/-l)) where C; is a skew Hermitian
self-dual code over G; for any i = 1,2,...,s, C’]’- is a linear code over Hj’ and
C]’-L is its Hermitian dual.

Our next step is to introduce the generator polynomial and the check poly-
nomial for skew GQC codes. Assume that C' is a skew GQC code of block length
(my, ma,...,my) and length m = 22:1. A 1-generator skew GQC code over R
generated by F(z) = (Fi(x), Fa(x), ..., Fi(x)) where F;(z) € ﬂA is defined
as

Rlz; 0]F(z) = {a(z)Fi(z),...,a(x)F(z)|a(z) € R[x;0]}.

In a similar way for skew [-QC codes we can consider a well defined R-
homomorphism v; from R’ to R; given by ¢;(F(z)) = F;(x). Then ¢;(C) is a
skew cyclic code of length m; and generated by F;(z) in R;. Therefore, 1;(x) has
a generator polynomial such as G;(z) where G;(z) is a right divisor of 2™ — 1.
Therefore, H;(z) = xgz i(;)l is the check polynomial of 1;(C). This implies that
H(z) = lem{H;(z)}!_; is the check polynomial for C. Let C be a skew GQC
code of block length (mq,ma,...,m;). We know that

2™ — 1= fin... fishithjy ... highjy,
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where f;, is a skew self-reciprocal polynomial and A}, is the skew reciprocal
polynomial of h;. for any r = 1,2,...,s and v/ = 1,2,...,k. In a similar way
for skew [-QC codes we can write the following factorization for R;.

k

@) k- —EEO gy Bl gy Bl Bled) )

<zgmi—1> = < [fir> | <hir > <hi, >

Let X,Y € R where X = (X1,Xs,...,Xy) and Y = (Y7,Y5,...,Y}) such that
X, Y € _Rlz0 g1 each i = 1,2,...,t. By (3), X; and Y; are as follows:

<zMi—1>

_ / " / 2
Xi — ("B’Ll) e ,Iis,xil,l‘ﬂ, P ,I‘it,l‘it)

/ /! / "
}/; = (yi17 <o Yiss Yi1r Yirs - - - )yit7yit)7

R[x;0 Rlxz;0 Rlxz;0
where z;,, yir € <][§fr>}, P TAVS <}£le]> and z ,,ylr, € <f[%>]. Therefore,
t k t k
XY o S )+ 303 ) + 3 0
=1 r=1 i=1r'=1 =1 r'=1

Clearly < X,Y >p =0 if and only if

t s t k
Z Z xi,rg(yir) =0, Z Z x;r’(g(yér’)
i=1 r=1 =1 r'=1
and 22:1 Zf/:l x ,0(ylr,) = 0. Hence we have the following result.

ar!

Corollary 3.2. A skew GQC code of block length (m1,ma,...,my) is a self-dual
Hermitian if and only if

Rz

where C; is a skew Hermitian self-dual over T ,1> foranyr=1,2,...,s and
C!, is a linear code over <R}£”T:9]> and C’#H is 1ts dual Hermitian over %.

4. Gray image of skew GQC codes and skew QC codes

Let X = (X(],Xl,. . .,X4n,1) = (X(O),X(l),X(Q),X(3)) S F%n where X(z) S FS
for all : =0, 1,2,3. We define the following map

Y :F3" — Fy"
T(X) = (n(X(0)) n(X(1)), n(X(2)), 1(X(3))),
where 7 is a map from 4 to [y with the property that
(X)) = (Xin-1, Xi0, - Xin—2),
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for every X(z) = (Xi,OaXi,laXi,n—l) where Xi,j € Fy for 73 =01,...,n — 1.
Also we consider the map A from F4" to F4" given by M X(0), X1), X2y, X(3)) =
(X(0), X(2), X(1), X(3))-

Definition 4.1. A code C of length 4n over Fy is said I-QC code of index 4 if
T(C)=C.

Proposition 4.1. Assume gy is the skew cyclic shift on R", Y is as above and
¢ is the Gray map from R"™ to F3". Then ¢ag = A\Y¢.

Proof. Let X; = x;+uy;+vz;+uvt; be elements of R foreach¢ =0,1,2,...,n—
1. By definition of the Gray map we have ¢(Xo, X1, ..., Xn—1) = (xo +yo + 20 +
to,x1+y1+21+t,. .., Zn—1 + Yn—1,2n-1 + th—1,20 + t0,. -+, Zn—1 + ln—1,%0 +
to, -y Yn—1+tn—1,t0,- -, tn—1). Weapply T, so Y(¢(Xo, X1,, Xn-1)) = (zn-1+
Yn—1t2n—1+tn—1,Z0+Yo+20+t0,. . s Tn—2+Yn—2+2n—2+tn—2,2n—1+tn-1,20+
Lo,y Zn—2+th—2,Yn—1+tn-1,% +l0,.. ., Yn—2+tn—2,tn—1,%0,. .. 7tn—2)- If we
apply A, then A(T(¢(X0, Xq,... ,Xn_l)) = (iL'n_l +Yn—1+2p-1+tn—1,T0+Yyo+
z0+to, .-y Tn—2+Yn—2+2n—2+tn—2,Yn—1+tn-1,% +to,. .-, Yn—2+tn—2,2n—1+
tn—1,20 +to, ..., 2n—2 + th—2, +tn_2,tn_1,t0,.. ., tn_2).

On the other hand, we have op(Xo, X1,...,Xn-1) = (0(Xn-1),0(Xo),...,
Q(ang)) We apply gb, SO QZ)(O'Q(XQ,Xl, ey anl)) = qb(Q(Xn,l), Q(Xo), ceey
0(Xn—2)) = (®n—1 + Yn-1 + Zn—1 + tn—1,20 + Yo + 20 + to,. .- s Tpn-2 + Yn—2 +
Zn—2 t+tn—2,.. . Yn—1 + tn—1,90 + to,. .-, Yn—2 + tn—2 +ln—2,2n—1 + tn—1,20 +
Loy vy 2n—2 + tn—2,tn_1,t0,...,tn—2). O

Theorem 4.1. Let C be a skew cyclic code of length n over the ring R. Then
the Gray image of C is permutation equivalent to skew 4-QC code of index /
and length 4n over Fs.

Proof. We know that o9(C) = C and ¢(0y(C)) = C. By Proposition 4.1,
d(o0(C)) = ¢(C) = MY (¢(C))). So we can say that ¢(C') is permutation equiv-
alent to [-QC code of index 4 and length 4n over Fs. O

Let I' be a map from F3" to F3" given by I'(X) = (£(X(0)), £(X(1)), £(X(2)).
§(X(3))), where § is the map from Fy to F3 given by

g(X(z)) = ((X(i,m—l))7 (X(i,()))7 B (X(i,m—Q)))¢

for every X ;) = (X(i,0),- - -» X(i,m—1)) where X; ;) € F, forallj =0,1,...,m—1.
A code of length 4n over Fs is called I-QC code of index 4 if I'(C) = C.

Proposition 4.2. Let 19, be a skew QC shift on R" and ¢ be the Gray map
over R". Then ¢1gm, = Al'¢.
Proof. The proof is similar to the proof of the Proposition 4.1. O

Theorem 4.2. Let C be a skew I-QC cyclic code of length n(n = ml). Then, C
is permutation equivalent to I-QC code of index 4 and with length 4n over Fa.
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Proof. Since C' is a skew QC code, 50 79 ,,1(C) = C. Also ¢(79,,,1(C)) = ¢(C)
and by the previous Proposition ¢((79m,,(C)) = AY¢(C). This implies that
¢(C) is permutation equivalent to I-QC code of index 4 and with length 4n over
Fs. O

We finish by investigating the above results for skew GQC codes. Suppose
that m = 2}221 mg and X = (Xo, X1,..., Xqm-1) = (X(D),X(l),X(z),X(g)) €
Fy™ for i = 0,1,2,3. Consider the map I from F3™ to F3™ given by I(X) =
(€"(X(0)), ' (X1)), &' (X(2)), €' (X(3))), where £ is the map from F3* to F3* given
by §'(X@)) = (X(im-1) X(5,0)s - - - » X(i;m—2)), for any Xy = (X(i,0)5 s X(iym-1))
such that X(; ;) € F3™ for j =0,1,...,m — 1. Also let X' be a map from 4m to
4m given by X' (X gy, X1y, X(2), X(3)) = (X(0) X(2)» X(1), X(3))-

Definition 4.2. A code C of length 4m over Fy is called GQC code of indez 4
if T'(C) =C.

By introduce the above maps and in similar ways of Proposition 4.1 and
Theorem 4.1 we have the following results.

Theorem 4.3. Let 7y,, be the skew GQC shift on R™ where m = 22:1 mg
and ¢ be the Gray map from R™ to Fy™. Then ¢7p,, = NT'6.

Theorem 4.4. The Gray image a skew GQC code over R of length m and block
length (mqy,ma,...,my) is permutation equivalent to skew GQC code of index 4
and length 4m over Fj.
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